De fraktioner eller bråknummer är de siffror som representeras av att indikera kvoten mellan två heltal till Y b, så länge som b skiljer sig från 0. Till exempel är 1/3 en bråkdel som läses som "en tredjedel".
Till numret till det är känt som täljare av fraktionen och till b Vad nämnare Av samma. Nämnaren berättar hur många delar vi ska dela upp helheten i. För sin del anger täljaren hur många delar av den helheten som togs.
Helheten är allt du vill dela eller dela, till exempel en pizza eller chokladkakan som visas i figur 1. Baren är gjord på ett sådant sätt att det är mycket enkelt att dela upp den i 5 lika delar, där varje del är motsvarande 1/5 av hela stapeln.
I fraktionen eller bråknummer 1/5 är täljaren 1 och nämnaren 5. Fraktionen läses "en femtedel".
Antag att vi äter 3 chokladbitar. Vi skulle säga att vi har ätit 3/5 delar av baren och det finns 2/5 delar kvar att dela med en vän. Vi kan också säga att vi åt "tre femtedelar av choklad" och gav "två femtedelar" till vår vän.
Den grafiska representationen av dessa bråktal är som följer:
Artikelindex
En fraktion är korrekt när täljaren är mindre än nämnaren och därmed dess värde är mindre än 1. Fraktionerna i föregående avsnitt, i exemplet med choklad, är korrekta fraktioner..
Andra exempel på korrekta fraktioner är: ½; 8/10; 3/4 och mer.
Täljaren för de felaktiga fraktionerna är större än täljaren. Till exempel 4/3, 8/5, 21/10 tillhör denna kategori.
Dessa fraktioner representerar ett heltal. Bland dem finns 4/2, 10/5 och 27/3, eftersom om vi tittar noga, ger resultatet av att dela täljaren med nämnaren av dessa fraktioner ett heltal.
Således: 4/2 = 2, 10/5 = 2 och 27/3 = 9.
Två bråk n / m och p / q är ekvivalenta när dividerande täljare efter nämnare ger samma kvantitet. På detta sätt representerar motsvarande fraktioner samma del av helheten..
Som ett exempel har vi fraktionerna: 15/2 och 30/4. När du delar 15 med 2 får du 7,5, men det är också detsamma om du delar 30 med 4.
För att ta reda på om två fraktioner n / m och p / q är ekvivalenta verifieras följande jämlikhet:
n * q = smp
När täljaren och nämnaren delas med samma nummer och förutsatt att resultatet är ett heltal erhålls en bråk motsvarande originalet men med mindre siffror.
Denna process fortsätter så länge täljaren och nämnaren har exakt samma delare. När det inte är möjligt att fortsätta dela, oreducerbar fraktion av den ursprungliga fraktionen.
Fördelen med att arbeta med den irreducerbara fraktionen är att en ekvivalent fraktion erhålls men med mindre antal. Det är därför som du arbetar med bråk, se till att minska dem när det är möjligt för att underlätta beräkningar..
Antag att fraktionen 12/20, som är täljare och nämnare jämn, kan båda delas med 2:
12/20 = 6/10
Och en gång till:
6/10 = 3/5
Fraktionen 3/5 motsvarar 12/20, men enklare.
En olämplig bråk medger också representation som ett blandat tal, så kallat eftersom det har en heltal och en annan bråkdel, bråkdelen är en riktig bråkdel..
Låt oss titta på ett snabbt exempel med fraktionen 15/2 som vi vet är lika med 7,5.
Vi kan uttrycka 15/2 som ett blandat nummer så här:
15/2 = 7 + 0,5
Men 0,5 = ½. Därför 15/2 = 7 ½ som lyder "sju och en halv".
Bråktal är nödvändiga eftersom både naturliga och heltal är otillräckliga när vi vill dela saker som godisbaren.
Och det är därför det finns ett oändligt antal måttmönster och objekt vars specifikationer inkluderar bråknummer, för att inte tala om antalet vardagliga situationer där dessa är nödvändiga..
I länder där det metriska systemet används är det vanligt att använda kilo för att hänvisa till vikten på många livsmedel. Vi vill inte alltid köpa hela kvantiteter, men lite mer eller lite mindre.
Det är därför vi frågar:
Och när man använder de angelsaxiska mätstandarderna händer samma sak: vi behöver 2 och ett halvt pund eller 1/4 pund av något.
Alla dessa siffror är fraktionerade och motsvarar, som vi har sett, två olika typer av fraktioner: korrekta och felaktiga..
Matlagningsrecept använder ofta bråknummer för att ange mängden vissa ingredienser. Till exempel:
Måtten på möbler, textilvaror och alla typer av hushållsredskap mäts i fraktioner av en meter eller en tum, oavsett om man använder det metriska eller angelsaxiska decimalsystemet..
Även i länder där det metriska systemet råder har kommersiella koppar-, stål- och andra rörledningar ofta diametrar som anges i tum. Även annan hårdvara som skruvar och muttrar.
Eftersom en tum motsvarar 2,54 cm uttrycks dessa bitar, som har mindre diametrar, vanligtvis i fraktioner av en tum..
Mycket vanliga åtgärder för hushållsrör är:
Bråknummer används dagligen för att uttrycka tidsintervall som ¼, ½ och ¾ på en timme, eller till och med lite längre: 1 timme och ¼ och så vidare.
Idag har Juanito tagit en tårta till skolan i födelsedagen och han vill dela ut den bland alla sina vänner, men han vill ge läraren ett stycke som är tre gånger större än barnens..
Med tanke på att det finns 24 barn + läraren, som du vill ge motsvarande tre bitar till, i hur många bitar ska du skära kakan??
Om Juanito bara ville fördela kakan bland sina vänner, skulle de ha 1/24 var och en.
Men eftersom han vill ge en del till läraren och att pjäsen är tre gånger större, måste han dela ut kakan bland 24 elever + 3 bitar till läraren. Med andra ord motsvarar varje barn 1/27 bitar och läraren 3/27 bitar.
Dessutom, om vi minskar fraktionen 3/27 får vi att läraren tar 1/9 av kakan.
Ett företag med en chef och tre anställda har 6 000 euro i intäkter varje månad. Hur mycket pengar har varje person om chefen vill behålla hälften av vad han har tjänat?
Om chefen vill vinna hälften måste han behålla 6000/2, vilket gör € 3000. Av de övriga 3000 euro som återstår är vad de tre anställda kommer att dela ut. Således tjänar varje anställd 3000/3, vilket resulterar i € 1000.
Hitta den oreducerbara fraktionen av:
a) 12/18 och b) 4/11
I det första fallet noterar vi att både täljaren och nämnaren är jämna och delbara med 2. De är också delbara med 3, eftersom 12 och 18 är multiplar av den siffran..
Så vi kan förenkla bråk genom att dela både täljaren och nämnaren antingen med 2 eller med 3, ordningen är likgiltig.
Börjar med att dela med 2:
12/18 = 6/9
Nu noterar vi att både täljaren och nämnaren för denna ekvivalenta bråk är multiplar av 3, så att dela båda med denna siffra:
6/9 = 2/3
Och eftersom 2 och 3 är primtal har de inte längre någon annan gemensam delare förutom 1. Vi har nått den oreducerbara fraktionen.
Den största gemensamma delarens GCF för täljaren och nämnaren kunde också ha beräknats. För 12 och 18:
GCF (12,18) = 6.
Och sedan delas täljaren och nämnaren med detta nummer, vilket motsvarar att göra det i steg.
Här observerar vi att 11 är ett primtal och dess delare är 1 och 11. För sin del medger 4 4, 2 och 1 som delare. Förutom 1 har dessa siffror inte en gemensam delare och därför är fraktionen 4/11 är oreducerbart.
Ange vilken som är den största delen av varje par:
a) ¾ och 5/4
b) 3/7 och 4/9
När två positiva fraktioner har samma nämnare, desto större är den som har större täljare. Därför är 5/4 större, eftersom 5> 3.
Om fraktionerna n / m och p / q har olika nämnare och båda är positiva är jämförelsekriteriet följande:
Om n.q> m. p, sedan n / m> p / q
Ett annat alternativ är att hitta decimaluttrycket för varje bråk och jämföra.
Enligt det första kriteriet: n = 3, m = 7, p = 4, q = 9. Därför: n.q = 3 * 4 = 12 och smp = 7 * 4 = 28.
Gilla 12< 28, ocurre que 3/7 < 4/9.
Eller så uttrycker vi varje bråk som ett decimal och får detta:
3/7 = 0.428571428… .
4/9 = 0,4444444444 ... .
Ellipsen indikerar att antalet decimaler är oändligt. Men detta räcker för att verifiera att det verkligen är 4/9> 3/7.
Ingen har kommenterat den här artikeln än.